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BIPOLAR ANGLE AVERAGES AND TWO-CENTER, TWO-PARTICLE
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University of Wisconsin Theoretical Chemistry Institute
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ABSTRACT

The bipolar angle average c¢f a two-center, two-particle

function f£(r_;, 1., T ,3R) is {£> = 47 )'2// fdw  dw,, .
A bipolar angle average weight function Lo is derived from
12(max)
12(min)
The Lo is independent of f and has a different, although

T
geometrical considerations such that < £ =/r £ 1L, dr

12 °

simple, functional form in each of 42 regions of r space.

al "b2 T12

However, the <:i§;> have different functional forms in only

four regions of r space. The expressions which we derive

al "b2
for the bipolar angle average are surprisingly simple and general,
requiring only the evaluation of integrals of the form //,f rlzdr12
and )( £ r122dr12. The bipolar angle averages are very useful

in the evaluation of two-center, two-particle integrals. Many of our

relations are greatly simplified by the use of homogeneous

coordinates.

* This research was supported by the following grant:

National Aeronautics and Space Administration Grant NsG-275-62.
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I. Introduction

In quantum and statistical mechanics, one frequently has
need to evaluate either the bipolar angle average or the
integral over all (two-particle) space of a two-particle, two-

center function f(ral 5> Typ s T R ). Here, as shown in

12 °
Fig. 1, R 1is the separation between the two centers a and b ;

Tyo is the separation between the two particles 1 and 2 ;

and r and r

al are the separations between the indicated

b2

center and particle. In a subsequent paper, more general functions

will be considered which, in addition, explicitly involve the

@ e

angles © Lo » and ¢b2 .

al > Tal’

The bipolar angle average of £ 1is defined as

-2
Gy oo er i, w
Here the integrations are over all the solid angles w al and W
dw a1 - sin gal anl d¢a1 and dw by = sin sz d9b2 d¢b2 )

while T.1° Tpa > and R are held fixed.
Dahler, Hirschfelder, and Thacher1 defined a bipolar angle

R, r /R ; R ) such that

average weight function L.o(ra

1 12

£ D> = f £1L dr, (2)
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The weight function L.o is independent of the function £ and
can be determined from simple geometrical considerations. The
derivation of L0 is given in Appendix A . For all values of
raI/R s rb2/R, and r12/R the functional form of 1L is very
simple. However, L.o has a different functional form in each
of the 12 separate primary regions (determined by the ratios:
rallR and rb2/R) shown in Fig. 2, and in each of the three
or four secondary regions (determined by the ratio r12/R)
within each primary region. The critical distances and
configurations within the primary regions which determine the
secondary regions are shown in Fig. 3.

Table 1 gives the functional forms of Lo corresponding
to the 21 secondary regions which comprise the half of two-
particle configuration space for which rai‘s Tyo ° In order
to obtain the functional forms of Lo in the regions for which
rbZ‘S T.17 it is only necessary to interchange the roles of
T.1 and Tio - Dahler, Hirschfelder, and Thacherl determined
L only for the "non-overlapping" primary region Ia and the
"slightly overlapping" primary region IV, , since only these
regions were involved in their free-volume theory of liquids.

Considerable simplification of our expressions for the

angle averages is achieved by using the homogeneous coordinates:
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Table 1

Functional form of Lo in each of the six primary regions

(as shown in Fig. 2) for which ral £ L
Ia : r 1 + Tio S R, Non-overlapping
IVa : L < R T + Tio Slightly overlapping
IVb P T, < R , RL o < R+ T.1 Greatly overlapping
IVC . > R , RK Ty £ R+ T.1 Greatly overlapping
IIa Ty < R , R + T < Tio » Enclosing
IIb . 2 R , R + r1 £ Tio s Enclosing
The functional form of Lo in each of the other six regions is
obtained by interchanging the role of r.1 and Tio *
Prilflary Secondary 1
Region Region (4ralrb2Rr12)Lo
Ta (1) ru3sr,8 Ti2t Y
(2) u, < P < uy u, + u,
(3) uy 1y, Sy Ty, Fu
IVa (1) 0 £ 1o < u, 2r12
@) ST ey F12 * U3
3 u, < T RS uy u, + ug
4) u; £ Tio Sy Tt u
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o al b2
u1 = -ra1 + rb2 + R
(3)
Up T gy T Ty tOR
u3 = ra1 -+ rb2 - R

Using the functional forms for Lo’ as given in Table 1,
it follows that in each of the 12 primary regions, (f) is the
sum of three or four integrals (each corresponding to a
secondary region). Quite surprisingly we found, by rearranging
these integrals, that (f > has the same functional form in
the primary regions Ia and Ib ; in IIa and IIb ; in IIIa

and IIIb ; and again in IVa » IVb R IVc s IVd , and IVe .

Thus { f)» has only four functional forms corresponding to

the four master regions, as shown in Fig. 4 :

I ral + rb2 s R
11 : r > r + R
7
111 ra1 ) rb2 + R
w o: R - r,y| & <1, +R

letting a subscript indicate the master region, we obtain
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LE>; = Wy + Wy - W(-uy)

L£>y = W(ul) - W(muy) + W(uy)
T )
. <f>III = cW(eu) 4 W(u,) o+ W)

<£) w W(ul) + W(u,) + W(uy) - 2W(0)

Here the W(x) are the r integrals which have only

12
the one functional form:
u
1 (o]
W(x) = e T f (-r12 +x)ry, £ (ral’rbZ’r12;R)dr12
al b2 X

6)

Table 2 shows the signs of the u's in each of the master
regions. The use of the homogeneous coordinates greatly simplifies

our equations for the bipolar angle averages.



Table 2

Signs of the Homogeneous Coordinates in Each of the
Master Regions

Master Region

1 I1 III Iv
u, + + + +
uy + + - +
u, + - + +
uqg - + + +

II. Bipolar Angle Average of Special Functions.

Let us consider the bipolar angle average of the following

n -1

functional forms: f= Tip > f = T2 eXP("x- r12) » and

f = d1 (r_l - 52). From Eqs. (5) and (6) we obtain:

A. Bipolar Angle Average, (r12n>

1. If n is any real number (integer or non-integer) except

-2 or -3,

-1 ot3 n+3 nt3 n+3)
<r12n)I = (4(n+3) (nt+2)R T rb2) [uo - uy - u, +(-u3) J

-1 n+3 n+3 n+3 n+3
(4 (n+3) (n+2)R T rb2) [uo - +( u2) ug ]

{r,,">
12 11

11



12

n _ -1 nt3 . nt3 _  n+3 _  nt3
<r12 >III = (4(n+3)(o+2)R T rb2) [uo +( ul) u, ug ]

In master region IV, if =n g -3, then <r12n> =4 OO-
v
However, if n > -3,
n - -1 nt+3 nt3 nt3 _ nt3
<ty > - (4@+3) (F2DR 1, T ,) [uo o o, us ]
2. n= -1, Although this case is included in the general

relations given above, it is sufficiently important to warrant

explicit consideration.

-1 1
<1'12 g = R
<r -1 - 1

12 'y b2

-1

<r _ 1
12 >111‘ r
al

1l Y 2
<t12 >1v— (4R 15Tp3) [(ral Tha) F Ry +ryy) R]
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3 n= -2
< -2 _ -2 _ - _ -2
Y12 >1 <’r12 - <r12 >111 <’12 >1v
= (ARralr b2)-1 uog n'uol - ulzn ‘ult ‘
-uzznluzl-uBQnIuBI
4. n= -3

-1
<r12-3>I = (4Rralrb2) [f_nuo +4n uy +fn u, -In 'u3] ]

-3 -1
<r12 )II = (4R ral l‘bz) [ "ﬂn u, +gn ul -In{uz‘ +ln u3]
<r12-3>111 = Ry rbz)—l[ fn oy -Anfuy| + 4 vy +Ln “3]

<rp,Hw™* ®

n
It is easy to see why the<r12 » for even positive integer

values of n are the same in all four master regions. Since

2 _ 2 2. .2 . X e
r = ral + rb2 + R = 2 L rbZECOS Oalcos sz + sin Qals1n sz(wal wa)J

+ R [rbz cos 6 , -~ T,y cOs 9a1] s
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it follows that r can be expressed in terms of the normalized

2
12

, 2
spherical hermcnics (using the notation of MIGL™) :

2,2, .2 0 0
2
vl = b | Tar ey RO Y (850,00 Yo Gupuffyy)

0 0,. 1 -1
- @y, (Y Cap e Gppfhy) ~ Y B,p08,0Y) CPRR]

/ 0

+23)7 % (b2 Yo CRTURD ACINTI BT ATCRUNSLACRREY|

&)

By the addition theorems of spherical harmonics, it follows that any

positive integer power of r can also be expressed in terms of

12

spherical harmonics, the same in all master regions. The <r12n)

(for even positive integer values of n ) is (411')-1 multiplied by

. s 0 0 . .
the coefficient of ¥, (931’%1) Y, CPY ¢b2) in the spherical

n

harmonic expansion of Ty -

B. Bipolar Angle Average, <r12_1 exp (- Y r12) >

Again using Eqs. (5) and (6), we obtain the bipclar angle

average of the Yukawa potential in a simple form:
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: D R R R
<L . r12>1 (‘*Rrasz)-la_z[e Y% e 701 e bluz e u,

12

II

-r -Xu -b’u u -
{Ae %) = <4Rrafb2>‘l2('2[e ° e I +e LA Ty

-r

1 12 _ -1y -2
{ioe Prp 7GR Y e

-b’uo Yul -Tuz -3’u3

- - -v? —K -y
1 T12 ~1y-2 Y“o U1 Y2 Uiz
< e >IV = (4Rra1rb2) b/ [e -e - e -e + 2

12

[a]

C. Bipolar Angle Average of Three-Dimensional Delta Function, <f(_r_1 - 52))

The three dimensional delta function J)(g;_ - 1.'_2) has the

1

property that if t[/(_1-_2) is an arbitrary function of the

coordinates of particle 2, then

Yep Iy -rpac= Pap. ®)
2 17 =2 1

Letting PQ,,) = 1, it follows that

Pove]
4y T 2 /)(1; -r, ) dr,, =
0 12 1 =2 12

|
-
.

(9)

Since O[l’(g1 - £2) is infinite when r,, = 0 and is otherwise

zero, it is easy to see from Eqs. (5) and (6) that



<0(’(?—1 S’ = <”{.(51 “r)7 g = (‘7&1 - £,)? =0

III

[[a]

I

-1
<J@ -2, = @w r t, R

(10)

I1I. Two-Center, Two-Particle Integrals

By making use of the functional forms for the bipolar angle
average, we obtain a method for evaluating two-particle, two-

center integrals (over all space) of the form

I=fff(ra1,rb2,r12;R)dT1 de (11)

R R-r
2 2 al 2
1= 161 f dr . r f dr, ., r. ., < £7
0 al "al 0 b2 b2 1

alL -
+ 16m J dr ) To L./ dryo T2 <Eppp

r
a1 ¥ 2
+ fr ) drb2 ro, LE¥.y F f dr, , b2<f>

(12)

16
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X

3 ' . . .
> for treating this type of integral are

Some previous procedures
limited to integrands which factor into products of the type
f = q(ral) S(rbZ) t(r12) where q, s, and t have known Fourier

transforms. In our treatment, f(ral’rbZ’r R) may be a completely

12}
general function, as our derivation only involves geometrical
considerations.

In the limit as R-+=0 , the integral I becomes a one-center,
two-particle integral. As R—0 , the master regions II and III
cover the r , - r , plane. Expanding ED — <f>III ,

as given in Eq. (5), in Maclaurin series in powers of R and

taking the limit as R-»0 , we obtain:

+r

., fat T b2
<EY pp = @rgymy) L. T2t
b2 al
"
-1 Tal + b2
KE7 0y = @rgpmyy) f Ty £y,
r - T

al b2
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Hence, Eq. (12) gives in the limit as R—*0 , since T =Ty

Tyg =Ty and I becomes a one-center, two-particle integral,
2 % 7 Tty
I = fffdtldtZ:g17 frldrl f rzdrzf r.. £ dr
0 * S 12 12
1 271

| Ty

+J[ rzderf Ty, f dr12 (13}
0 r,°r,

The same result can easily be found by direct integration.

Making use of the bipolar angle average of C{ail - 52) R
Eq. (10), it is easy to reduce our Eq. (12) to correspond to the
integration of a two-center, one-particle integral. First, let
us take f = g(ral, Tyos R) a/%El_EZ . Then, from Eq. (8) it

follows that Eq. (l1) reduces to

Now substituting the bipolar angle average of the delta function,

Eq. (10), into Eq. (12):
-1 hR+ra1
fg(ral » Ty 3 RIAT, = 2R ‘/o Ta1%a1 JR_r 8T 10 Tp1d RITp19my
al

4 Rér_,
+ 21 R ‘/;raldral\/: = g(ral,rbl; R)rbldrb1

(15)
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This same result may be obtained by direct integration{ (Express
the integral in terms of ellipsoidal coordinates. Integrate over
the angle #. Then change variables from //4 and A to r and

al
)

)

IV. Evaluation of a Sample Integral.
In order to illustrate the applicability of using the bipolar
angle averages in the evaluation of two-center, two-particle

integrals, we considered

. _ n 2. 2.
K(;«,p;R)= ffrlz a, b2 dT ,dT, (16)
where
o 3,1/2
a, = (————j) e -e‘ral
1 )
and
3 .1/2
(é ) Y
b, = e
2 %
We restrict ourselves to integer values of n > -2 . For half-

integer values of n, the K integrals can probably be expressed

in terms of the error function and its auxiliary functionms.
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Except for a few special cases, fractional values of n lead to
K integrals which must be expressed in terms of difficult types
of transcendental functions or infinite series. Using our

. n . X
relations for the <:r1£) in the four master regions together

with Eq. (12), we obtain rather easily the following results:

1. n= -111g 39 )

R(n;e, 3 5 R)
1/2(a+3) 1/2(n+5)-k

Z Z | kj (n+1)! R
k=1 j=1

2B 257205 32372 (115-2Kk-25) !

n+b-2k-2

' 4 2 2 2
(at1)! e 2%R B4 B L4 +(@+3)(x“- 8°)

- +
(2 )™ (x2- g 52 22 - g3

4
(nt+1)! e-zlR ﬁ? x

L
R

xa{‘*ﬁz . (n+3)(32-a<2)] .

+
2p yoH1 $ 2,22 20 2,23

R
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K(n;o¢,« ;R)

1/2(a+3) 1/2(nt5)-k nh-2k-23

Z Z k j (at1)!' R
= 2k + 2§ -4 ]
0 =0 (2e) 37 (n#5 - 2k - 23)!

: -2 R :
(n+1)! e RZ 4+ (aH)R + (n45)(ntb)-1 + (n+7) (n+5) (n+3)
3 2 bhog ¢ 24;«(3 R

kj(n+1)! R HE2k2]
K(n; < , B 5 R) =Z

k=1 =1 (Zﬂ)Zk-z(z.()Zj’z (n+5-2k-23) !

K(-2; x ) {3 ; R)
3 3
I C B + B B%s54% 1

= exp(+2« R) Ei(~2xR)
(<Z -2y’ [a( 2 2( 2 - g2 R‘J

2 2
+ exp (-2o¢ R) Ei(+2«R) [6 - B (f( -25o< i) ; ] +
2 x"(x"-B

(continued on next page)



2 2
< x (X -5/3)

3 zﬁz(ﬁz_xz) R

oy

+ exp(+2pR) Ei (-2[3R)

+ exp (-12,31{) Ei (+2'g R) ﬂ - 2;2(p25ﬁx ;) ; ]}

X

22

[
where Ei(x) =f y“1 exp( y )dy and Ei{ - x) = -f y.1 exp( -y)dye.
x

- 00

For o = 3 the integral simplifies considerably:

K(-2;e, « ; R)

A 2 T4 2 3
T , < R < R 5% 5
= - 13 + exp(+2 « R)Ei (-2 ¢ R) 3 - > + A TR
4 2
. xR xR sed 5«
+ exp (-2 &« R)EL (+2( R)[ g + 5 + 3 + TER

For n =0, we obtain K(0; « ,(2 ; R ) =1,corresponding
to the statement that the 1s 'wave functions" a, and b2 are

normalized. For n = -1, the K(-1; &, ﬂ 3 R ) 1is the Coulombic

integral which occurs in HeH' (for o« # (5 ) and H, (for & = 3 ).

Our expressions for this Coulombic integral agree with results

given in quantum mechanical tables of imtegrals.

)
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V. Discussion

In a subsequent paper, we shall consider bipolar angle
averages of the form < f ij(al) Y’-mk(b22> where the Y's are
al’ ¢al and

) ¢b2 respectively and the f is a function of r

the normalized spherical harmonics involving 8
al * Tb2?
Py and R . If we know such bipolar angle averages for all
values of j, k, and m, this is equivalent to knowing the bipolar

expansion of f ,

ot o0 +<
E: zl 2‘ (f‘], -m;k m)Y j (al) Ym (b2)
j=0 k=0 m=-

(17)

Here the symbol < indicates the lesser of j and k .
Conversely, each coefficient (f!j,-m;k,m) determines a bipolar
angle average < f ij(al) Y-mk(bZ) > . Thus, (£f/0,0;0,0) =< £ >,
In each of the four master regions, the (f[j,-m;k,m) may be

different functions of T.10 Tpoo and R . For the function

12-1 , Carlson and Rushbrooke6 determined the set of
coefficients in the master regions I, II, and III. Then Buehler

. 7,8 s .y -1y, .
and Hirschfelder ’  determined the ({r !J,—m;k,m) in the

12

difficult master region IV, as well as the coefficients in I, II,
and III. Prigogine9 obtained the expansion coefficients for

f = r12-m (where m > 1) in master region I. However, Prigogine's



coefficients are in the form of infinite series which are not
. 10 .
convenient to use. Subsequently, Sack  discovered a general

relation for the expansion coefficients of f =r in all

n
12
four master regions for integer values of n > -1. Sack

further claims that his relation is also valid for arbitrary
values of n 1in master regions I, II, and III. For n = -1,

his coefficients agree with those obtained by Carlson and
Rushbrooke6 and Buehler and Hirschfelder7’8. However, Sack's
results are not convenient for integers n & -1 where his
coefficients, expressed in powers of T 1> Tpo 2 and R , are
infinite series. Our coefficients, expressed in terms of the

U syl and u,, are simple. In addition, Sack showed11 that
the expansion coefficients of the three dimensional delta
function (/7(1:_1 - 52) are only finite in master region IV.

For a general function f(ral,rbz,rlz;R), Sack gives formulae for
the expansion coefficients which correspond to expanding f in
powers of Typ -
Sack's approach is quite different from ours. By

considering the nature of the differential equations which are

e 1,5, he egtablished a recursion relation

satisfied by t

s s n, . . 2
between the coefficients (r12 | j,-m;k,m) and the coefficients
n

(rlzn- | j,-m;k,m). Furthermore, the coefficients of T,

may be expressed as the sum of terms of the form



n-s s-t __t . .
T R, where s and t are integers.

An-s,s—t,t Tal b2

The allowed values of s and t are restricted by considering
. . ny. .

the required behaviour of (r12 !J,-m;k,m) along the boundaries

of the master region under consideration. From such studies,

Sack determined the expansion coefficients in terms of the

Appell functions F4 (which are a generalization to two variables

of the usual hypergeometric functions),

EZ(a,b;c,d;x,y) = E: E: (azviw) (bivhw) x v
v ow

(c;v) (d;w) v! w!

(18)

Here the summation is over all non-negative integer values of

v and w. We have used the notation:

a(a+l) ... (at+k-1)

(a3k)

(19)

and (0;k) = ka

I
-

(a;0)

.. n . _ n
Thus, for the coefficient (r,, 10,0;0,0) = <ry, >,Sack
obtained in the four master region512 {indicated by the

subscript):

25



26

n n . . 2,2 2,2
<r12 >I = R FA(-n/Z, -(n+1)/2; 3/2, 3/2; T /R" T /R
<. P> = ¢ OF (-n/2, -(at+1)/2; 3/2, 3/2; R2/r 2., r 2/R2)
12 "11 al "4 % i ? > al”™ 2> "b2
_ n . L 52 2 2 2
<r12“>HI- T, F,(-n/2. -(a+1)/2; 3/2, 3/2; R™/ry," 5t “/r ")

<19 >y (1/2)[<t12 >rt <y g Sy >1v—_!

2,2
R",

8 i lgot? F4€-1/2)(}m),e1/2)(2+n);1/2,1/2; T

al b2
2,2
Tio /R ) .
(20)
It is clear that our relations in terms of the homogeneous

coordinates are much simpler. Thus, from Sack's relations,

given by Eq. (20), for the integer values of n 33-1 :

a) n=-1,1, 3, 5,

1/2(a+1) 1/2(n+1)-4 (n+1)! T 25 2f ;n-2j-24
al b2

y Z 2 jlp)! (m-25-20)!

i=0

G/xmt1) 6/24nt)-L (1) A;a,lzj-]beZ.I-l r (w224
<r12n>11 B Z Z
A=0 §=0

25+ 2! [(m-2f-25) + 1]
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(/%a+1) @/ n+1)-2

n
<12 Jrrn Z Z
2:0 j=0

' 25-1 28 _ (n-20-235)+1
(n+1)! L Ty R

23! @h)! [(-20-23) + !

(1 /2Xn+3)
n -\ -2(nt+1)! ) 2j n+3-2j
<r12 >IV Z (2j)'(n+3-2j)' (ral rb2) R
720 ! !
@L/Xn+1)
2 2(n+1)! 2j+1 n+2-2j
+ (r +r..) R
P (25! (at2-25)! 2t P2

-¥ 24

n
2
Ej }i (n+1)! Tal

(25+1)! 41! [(m-25-2p) + 1]!

r zn'Rn-Zj-Zl

b2

There are two reasons for giving so much attention tc
Sack's relations. First of all, expansions in powers of Ta12 Tpo?

and R may be required for some uses of the bipolar angle

averages. And, second, in our subsequent paper we will rely




heavily on the work of Sack. Indeed, we shall need to refer to
the above equations.

In our present paper, we derive a set of bipolar angle
average weight functions which lead to a surprisingly simple and
general relation for the bipolar angle average of a function
f(ral,rbz,rlz;R). These bipolar angle averages simplify the

determination of two-center, two-particle integrals.
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APPENDIX A

Consider the two-center, two-particle bipolar angle average

of a function f(ral’ Tyos Tqos R). 1t is

_ -2 .
<f> = (40 d0 47 | £lryps Ty Typs R) A, (a.1)

where W al and Cg)bz are solid angles based on centers a and b ,

and the integration is carried out holding r nd R fixed.

al’ Tp2’ @
We can express dCUal = 51n9a1 dgal d¢a1 with the polar axis
pointed from a to b . For ciQJbz it is convenient to take the
t

. . w = .

polar axis from b to a along the line bl. Thus, 4 19 31njxﬂj<d¢b2 R
1

where the angles )( and ¢b2 are shown in Fig. 1. Eq. (A.1l) then

becomes

-2 n 2% T 2n .
(£) = (4m / sin_,de_, / d¢a1/ sinXdk/ £d0, . (A.2)
(o] [s] o o

But r

]
12 and ¢b2 and therefore

is independent of ¢al

£) = (_1/4)]Tt sin8_,d6_, /H £sin X dX . (A.3)
(o} o

Now let us define a bipolar angle average weight function Lo such

that




r..,(max)

_(F12 , .

{£) = L By Ths g RY L(rpsmyperyps R) drygy
rlz(mxn)

(A.4)
At this point we pause to introduce useful notation. Two-
dimensional representations of the two-particle, two-center system

are drawn in Fig. 3. These consist of a circle "a" of radius r

al
about center a and a circle "b" of radius Tio about center b.
The T 12 Tpos T12° R, and eal are defined as before. If the
circles intersect, the angle eal measured to the point of

intersection is denoted by eint'

First let us consider the regions IVa, IVb and IVc where

the spheres "a'" and "b'" intersect. In order to determine Lo s

we first hold gal constant and determine the area swept out on

circle "b" which is characterized by the range ry, to

Tio +é Tig - This area is shown in Fig. 5 (for a non-overlappihg

region). Then we integrate over gal . Thus

. -
8int X(r 12+Cf o)
s:LnQaldOa1 X{:ln%dx
Y12

0

i = L .. - (A.5)
" A& 12+ 712)

+ sinQalanl sinde
% nt X(rlz)
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It is necessary to split the integral at gint because a particular
value of Tio and 7( may correspond to two angles eal ; the
one less than gint is called an interior angle and is denoted by

e 11,

the subscript "i"'; the other, greater than Qin , is called an

t

exterior angle and is denoted by the subscript "e'". 1In carrying
out the integration of Eq. (A.5), we find that L0 has a simple

functional form in each of a number of ranges of r Each of

12°

these ranges is called a secondary region. Within a particular

secondary region, gal is required to lie either within the interval

/A
/A

1i al 2i int

or within the interval

int NS le al 2e .

Here the limiting angles gli s 921 s ele and 92e are determined

by geometrical considerations as shown in Figs. 6 through 11. From

Fig. 1. we have

2 2 2 2
Tar FoTpy tRO-Tg 1 1

cosX = 73 A,
2rb2(R2 + ralz - 2Rra1cosea1)

- 2Rr _.cos9
a a

)
(o)}
.

from which




r
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dr

12 712
sin X d} = > 5 77 A.7)
rbZ(R + r, 2Rra1cosea1)
Hence
r12 921 s1n9a1d9al
L = ——
o 4Rr 2 2 1/2
b2 911 (R™ + Tl 2Rralcoseal)
eZe 51n931d9a1
+
2 2 1/2
ele R” + T, T 2Rra1cosea1)
(A.8)
Now we immediately obtain,
T12
Lo = 4Rr T (tZi - tli )+ ( t2e B tle) (a.9)
al b2
where
t = (R2 +r 2 _ 2R cos® )1/2
1 al Ta1°9%%11
_ 2 2 1/2 (A.10)
t2i = R™ + Ty T 2Rr31COSGZi)
t = (R2 + r 2 _ 2Rr ,cos® )1/2
le al al le

(continued on next page)



t = (R2 + r 1/2

- 2Rr .cos6
2e a

al 1 2e)

These t's are listed in Table 3. The resulting valies of L0

are then given in Table 1. If the angle ea2 corresp.nding to a

value of t 1is desired, it may be obtained from

R2 +r 2 t2
al

cosGal = Re (A.11)
al

In region Ia’ IIa and IIb where the spheres '"a" and 'bB"

do not intersect, the analysis is the same with the exception that

eint is equal to 0 or to = ,so that in Eq. (A.8) there is only

one range of integration: either from ele to 92e (in region Ia

where 0,

int 0); or from © to 9,. (in regions IIa and II

1i 21 b

where 8,

int ). Correspondingly, in Eq. (A.9), in region Ia,

the t; < ty, = 0 whereas in region IIa and IIb , the
t = t2e = 0 . The values of the t's are given in Table 3

and the corresponding Lo's are listed in Table 1.
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.Fig. 6. The Liniting Angles 0,

andG

for Region I .

Subfigures (1) and (2)‘refer Eo Secondary
Region I_(1); (3) and (4) refer to I (2),

and (5) ind (6) to 1_(3).
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Fig. 7. The Limiting Angles 8, and © for Region II

Subfigures (1) and (2}i refer t&5 the Secondary® ©
Region IIa (1); (3) and (4) refer to IIa(2); and
(5) and " (6) refer to IIa(B).

U ———



8,0
3)
Fia. 8.

N2

i
(2)

A8
N\

The Limiting Angles 8, and 92
Subfigures (1) and (2)~ refer to
Region IIb(l): (3) and (4) refer
and (5) and (6) refer to IIb(B).

for Region
the Second

to IIb(Z);

IIb.

“l.]
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_Fig. 9.
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- (%)

(L] (n

The Limiting Angles 6.., 6,., 8, and 6, for
Region IV_. Subfigur%é (1§iandle(2) re%gr to the

"‘"6"""

Secondary Region IV, (1) (interior); (3) and (&)
refer to IVa(Z)(interior); (5) and (6) refer to
IVa(B) (interior): (7) and (8) refer to IVa(l)
(exterior); (9) and (10) refer to IV3(2)(exterior);
and (11) and (12) refer to IV4(3)(exterior).
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7
2

N4
@ . & )

i “)

m

Ao - e o

: : _Fig. 10 The Limiting Angles 0,,, 8,., 6, and 8, for

' Region IV, . Subfigures (1Y and™ (2) re%er to the
: Secondary Region Ivb(l)(interior); (3) and (4)
Z ‘ refer to IV, (2) (interior); (5) and (6) refer
to IVb(B) (interior); (7) and (8) refer to IVy(1l)
(exterior); (9) and (10) refer to IVb(Z)(exterior);
and (11) and (12) refer to IVb(B)(exterior).
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Fig. 11.

The Limiting Angles Q i and 8, for
Region IV,. Subflgures (13 and (2) re%er to
the Secondary Region IV, (1) (interior); {3} and’
(4) refer to IVC(Z)(interior), (5) and (6) refer
to IV, (3) (interior); (7) and (8) refer to IV,
(1) (exterior); (9) and (10) refer to IVc(Z)
(exterior); and (11) and (12) refer to v, (3)
(exterior).
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 5.

Fig. 7.

Fig. 8.

Fig. 9.

Fig.10.
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Figure Captions

Two-particle, Two-Center Coordinates

Division of r1 b2 Plane into Twelve Primary Regions

Critical distances and configurations within primary

regions which determine the Secondary Regions. The circles
show why we call region I non-overlapping, IV_ slightly

over lapping, IVb and IVc greatly overlapping, and II enclosing.

Division of T.1 " Tpo Plane into Four Master Regionms.

Area swept out on circle '"b" from a point on circle "a"

with 6 ., r ., r, ,, and R held constant and r

lying in thearange r., tor +<$r . 12
12 12 12

The Limiting Angles 9 and © for Region I . Subfigures

(1) and (2) refer to Secondary &eglon 1 (1), (3) and (4)

refer to I (2); and (5) and (6) to I (3)

The Limiting Angles 6 i and 9 for Region II .
Subfigures (1) and (2) fefer to %he Secondary Reglon
IT (1); (3) and (4) refer to II (2); and (5) and (6)
refer to IIa(B). a

The Limiting Angles © i and 9 for Region II
Subfigures (1) and (2) tefer to %he Secondary Reglon
II, (1): (3) and (4) refer to II (2); and (5) and (6)
re?er to II (3).

The Limiting Angles 6,_, 9 and 9 for Region IV_.
Subfigures (1) and (2) %efer to %he Secongary Region IV
(1) (interior); (3) and (4) refer to IV (2) (interior);

(5) and (6) refer to IV (3) (1nter10r) (7) and (8) refer
to IV (1) (exterior); (9) and (10) refer to IV 2)
(exterlor), and (11) and (12) refer to IV 3) (efterior).

The Limiting Angles 8 92 R 9 and 8, for Region IVb

Subfigures (1) and (2 refer to %he Secondary Region

IV, (1) (interior); (3) and (&) refer to IV _(2) (interior);
3 and (6) refer to IV, (3) (interior); (73 and (8) refer

to IV, (1) (exterior); (9) and (10) refer to IV, (2)

(exter?or); and (11) and (12) refer to IV 3) (ex%erlor).



Fig.1l1l.
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Figure Captions (continued)

The Limiting Angles 6.., 6_. , 6. and 6, for Region IV .
Subfigures (1) and (Z}Irefg% to %ﬁe Seco%gary Region ¢
IV (1) (interior): (3) and (4) refer to IV (2) (interior);
(53 and (6) refer to IV (3) (interior); (73 and (8) refer
to IV (1) (exterior); (5) and (10) refer to IV (2)

(exte%ior); and (11) and (12) refer to IVC(B)c(exterior).



